One-Dimensional Diffusion in a Semi-Infinite Poisson Random Force

نویسنده

  • Petr CHVOSTA
چکیده

We consider the one-dimensional diffusion of a particle on a semiinfinite line and in a piecewise linear random potential. We first present a new formalism which yields an analytical expression for the Green function of the Fokker-Planck equation, valid for any deterministic construction of the potential profile. The force is then taken to be an asymmetric dichotomic process. Solving the corresponding energy-dependent stochastic Riccati equation in the space-asymptotic regime, we give an exact probabilistic description of returns to the origin. This method allows for a time-asymptotic characterization of the underlying dynamical phases. When the two values taken by the dichotomic force are of different signs, there occur trapping potential wells with a broad distribution of trapping times and dynamical phases may appear, depending on the mean force. If both values are negative, the time-asymptotic mean value of the probability density at the origin is proportional to the absolute value of the mean force. If they are both positive, traps no more exist and the dynamics is always normal. Problems with a shot-noise force and with a Gaussian white-noise force are solved as appropriate limiting cases. Heading: Statistical physics Short title: Diffusion in Poisson Quenched Disorder PACS number: 05 40 Fluctuation phenomena, random processes and Brownian motion. Permanent address: Department of Polymer Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00 Prague 8, Czech Republic. Tel.: +4202-2191 2356; Fax: +4202-688 5095; e-mail: [email protected] Tel.: +33-1-44274609; Fax: +33-1-43542878; e-mail: [email protected] Laboratoire associé au C.N.R.S. (UMR 7588) et aux Universités Paris VI et Paris VII. 1

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anomalous biased diffusion in a randomly layered medium.

We present analytical results for the biased diffusion of particles moving under a constant force in a randomly layered medium. The influence of this medium on the particle dynamics is modeled by a piecewise constant random force. The long-time behavior of the particle position is studied in the frame of a continuous-time random walk on a semi-infinite one-dimensional lattice. We formulate the ...

متن کامل

Some Diffusion Processes Associated With Two Parameter Poisson-Dirichlet Distribution and Dirichlet Process

The two parameter Poisson-Dirichlet distribution PD(α, θ) is the distribution of an infinite dimensional random discrete probability. It is a generalization of Kingman’s Poisson-Dirichlet distribution. The two parameter Dirichlet process Πα,θ,ν0 is the law of a pure atomic random measure with masses following the two parameter Poisson-Dirichlet distribution. In this article we focus on the cons...

متن کامل

Electrostatic analysis of the charged surface in a solution via the finite element method: The Poisson-Boltzmann theory

Electrostatic potential as well as the local volume charge density are computed for a macromolecule by solving the Poisson-Boltzmann equation (PBE) using the finite element method (FEM). As a verification, our numerical results for a one dimensional PBE, which corresponds to an infinite-length macromolecule, are compared with the existing analytical solution and good agreement is found. As a ma...

متن کامل

Three-dimensional analytical models for time-dependent coefficients through uniform and varying plane input source in semi-infinite adsorbing porous media.

In the present study, analytical solutions are developed for three-dimensional advection-dispersion equation (ADE) in semi-infinite adsorbing saturated homogeneous porous medium with time dependent dispersion coefficient. It means porosity of the medium is filled with single fluid(water). Dispersion coefficient is considered proportional to seepage velocity while adsorption coefficient inversel...

متن کامل

Three-dimensional analytical models for time-dependent coefficients through uniform and varying plane input source in semi-infinite adsorbing porous media.

In the present study, analytical solutions are developed for three-dimensional advection-dispersion equation (ADE) in semi-infinite adsorbing saturated homogeneous porous medium with time dependent dispersion coefficient. It means porosity of the medium is filled with single fluid(water). Dispersion coefficient is considered proportional to seepage velocity while adsorption coefficient inversel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998